## 如何运行 0. 环境与依赖: - python 3.7 - tensorflow 2.0.0b0 - pillow(PIL) 4.3.0 1. 下载数据集:[The EMNIST Dataset](https://www.nist.gov/itl/products-and-services/emnist-dataset) 2. 解压数据集,选取其中的 - emnist-letters-train-labels-idx1-ubyte.gz - emnist-letters-train-images-idx3-ubyte.gz - emnist-letters-test-labels-idx1-ubyte.gz - emnist-letters-test-images-idx3-ubyte.gz 复制到 `data_set_emnist_letters` 目录中(已放入) 3. 运行 `src/letters/letter_train.py` 开始模型训练 4. 运行 `src/letters/letter_predict.py` ,对 `english_images` 下的所有图片进行识别,并逐一显示结果 ## 附 字符编码表(UTF-8) | **字符** | **编码10进制** | **编码16进制** | **Unicode编码10进制** | **Unicode编码16进制** | | -------- | -------------- | -------------- | --------------------- | --------------------- | | a | 97 | 61 | 97 | 61 | | b | 98 | 62 | 98 | 62 | | c | 99 | 63 | 99 | 63 | | d | 100 | 64 | 100 | 64 | | e | 101 | 65 | 101 | 65 | | f | 102 | 66 | 102 | 66 | | z | 122 | 7A | 122 | 7A | | A | 65 | 41 | 65 | 41 | | B | 66 | 42 | 66 | 42 | | C | 67 | 43 | 67 | 43 | | D | 68 | 44 | 68 | 44 | | E | 69 | 45 | 69 | 45 | | F | 70 | 46 | 70 | 46 | | Z | 90 | 5A | 90 | 5A |